
#DotNet2021

22nd June 2021

O N L I N E T E C H C O N F E R E N C E

www.dotnet2021.com

Introduction to native
compilation in Dotnet

ORGANIZATION SPONSORS

#DotNet2021

IN COOPERATION WITH

#DotNet2021ONLINE TECH CONFERENCE

Cloud and new technologies passionate.

Working with Microsoft technology since 2008.

Working at Plain Concepts since 2016.

Carlos Landeras
General Manager at Plain Concepts

#DotNet2021ONLINE TECH CONFERENCE

Agenda

• An introduction to AOT (Ahead-of-time) compilation

• Scenarios

• JIT vs AOT (What are the differences)

• Startup time and performance

• Compiling with Native AOT (Demo)

• Cross-architecture compilation (Demo)

• Ahead of time compilation + Docker (Demo)

• Interop with Rust (Rust to C# and C# to Rust demos)

#DotNet2021ONLINE TECH CONFERENCE

Introduction to native compilation

• Native AOT .NET Runtime can compile dotnet applications into a
native single-file executable (improved startup time and
performance)

• It can also produce standalone dynamic or static libraries that can
be consumed by applications written in other programming
languages. (Consume C# from C++, rust, etc).

• Cross compilation: There are dedicated nuget feeds to compile in
Linux, macOS and Windows x64

#DotNet2021ONLINE TECH CONFERENCE

Scenarios

• Copying a single file executable from one machine and run on
another (of the same kind) without installing a .NET runtime.

• Creating and running a docker image that contains a single file
executable (one file in addition to Ubuntu).

• Compiling C# libraries into dynamic or static libraries, so they can be
consumed by other languages like C++ or rust without having to use
COM or library wrappers.

#DotNet2021ONLINE TECH CONFERENCE

JIT vs AOT

JIT = Just in time compilation

• When the C# compiler compiles our source code it generates IL assemblies.

Common Intermediate Language (CIL) bytecode

• MSIL is a CPU-independant set of instructions that can be converted to native code.

• Our assemblies contents are split in two categories:

• Code of our application

• Medatada about our code (types, base classes, interfaces, methods, fields,

etc).

• When we execute a dotnet application, the runtime converts MSIL code into native

code

Source: geeksforgeeks

#DotNet2021ONLINE TECH CONFERENCE

JIT benefits and drawbacks

Benefits Drawbacks

Independant of the hardware or OS the code will
run on

The Runtime needs a type loading step to compute
the information necessary to execute the program.

A lot of things need to happen before the runtime
actually executes our first line of code.

Great version resiliency (high level intermediate
language)

Data structures are not fully optimized like in other
native compiled languages

#DotNet2021ONLINE TECH CONFERENCE

AOT

Ahead of time compilation

• AOT emits platform specific native code.

• We can run self-contained native executables without installing the .NET runtime in the

operative system

• Note: Our program is as hard to decompile as a c++ native executable. Reflector no

longer works :P

#DotNet2021ONLINE TECH CONFERENCE

AOT benefits and drawbacks

Benefits Drawbacks

Improved performance and reduced startup time
as we do not have to execute all the preliminary JIT
compiler steps before running our code.

No Support for Dynamic loading
Assembly.LoadFile

No Support for runtime code generation
System.Reflection.Emit

Smaller compilation output sizes. Reflection based assemblies can force us to
declare Assembly directives to help the compiler
find types that should be analyzed

#DotNet2021ONLINE TECH CONFERENCE

Source: @MStrehovsky

#DotNet2021ONLINE TECH CONFERENCE

Show me the code !

• Compiling with Native AOT

• Cross-platform compilation

• Ahead of time compilation + Docker (Demo)

• Interop with Rust (Rust to C# and C# to Rust demos)

#DotNet2021

Thanks and …
See you soon!
Thanks also to the sponsors. Without whom this would not have been posible.

O N L I N E T E C H C O N F E R E N C E

www.dotnet2021.com

