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Someone may think
that a product ...

» fulfills a real, deeply-felt need

» delivers a singular value proposition

* issimple and intuitive

* has a great design = Craftspersonship

e uses the correct technology
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Customers don’t know what they want
until we’ve shown them.

You've got to start with the customer
experience and work backwards to the
technology. You can't start with the technology
and try to figure out where can | sell it.

Steve Jobs
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How can | become
customer centric?

* Beingin customers shoes
DILO - Day In Life Of

* Try, test, innovate

* Create new necessities

* Personalization over generalization

e Understanding customer psychology
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Eduardo Matallanas
Head of Al @ Plain Concepts

Knowmad interested in:
* Changing live through Al

e Passionate in robotics

e Datalover

*  Films & series

@ematde

* Bike enthusiast & martial artist practitioner

eduardo.matallanas@plainconcepts.com
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Things we will today

* Customers, customers and more
customers

e Causality
 How to combine Al+causality

* Some Statistics

Lots of questions with no answer



SINGULARITY 207

How can | become user-

centric?

e Data is needed
* Monitor your users
* Measure user behavior

* Use of Al/ML to
* Find data correlation
e Extract features form behavior

Why really users select our product?
Causality is the answer

#STechDay2021
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Why do we need causality when we already have
Al?

* Not everything is correlation

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films
%]
B0
C
c
% 120 drownings 4 films %
S 3
g g
o0 &
‘£ 100 drownings [ o 2 films B
£ v
2
(V2]
80 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Nicholas Cage - Swimming pool drownings
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Why do we need causality when we already have
Al? P sy .

* Not everything is correlation
* Al often finds spurious ones

VIA 9GAG.COM
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Why do we need causality when we already have
Al?
* Not everything is correlation

* Al often finds spurious ones

* Implies generalization problems

Dumb-bell

What color is the tray? Pink

What colour 1s the tray?  Green
#,  Which color 1s the tray?  Green
% What color is it? Green

How color is tray? Green
Incorrect predictions under changes in data Fooled by semantically equivalent perturbations

[Alcorn et al. CVPR 2019] [Ribeiro et al. ACL 2018]
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Why do we need causality when we already have
Al?

* Not everything is correlation
* Al often finds spurious ones

* Implies generalization problems

* Not too explainable

Evaluation

Metric |:‘1>~ A ‘

Interpretation E:> w

b

\74)
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Why do we need causality when we already have
Al?

* Not everything is correlation

* Al often finds spurious ones women’s
* Implies generalization problems women's C”eg;p‘;gﬁ
* Not too explainable ST
* Fairness/Non-discrimination captured
* Some correlations shift data Bias in ML model for hiring decisions

distributions [Reuters 2018, Weblink]
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Why do we need causality when we already have
Al?
* Not everything is correlation

* Al often finds spurious ones
* Implies generalization problems
* Not too explainable

* Fairness/Non-discrimination

e Some correlations shift data
distributions

* Decision-making =2 “Human-like” Al
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There is only one constant. One universal.
It is the only real truth. Causality. Action,
reaction. Cause and effect.

The Merovingian

@
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What is causation?

* Inferring the effect of a treatment/policy T in some outcome Y

* Example: Sleeping with shoes causes waklng up with headache.
 Common cause: drink night before .

'L
: b
o4
Causal Association

Total association = Causal + Confounding
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Difference between Al and Causal inference

Supervised Machine Learning Causal Inference
C Assume: - Perain(W, X, Y) # Progt (W, X, Y)
Ptrain(W» X, Y) = Ptest(Wr X, Y)
Find the underlying generative model
<W,X,Y > Estimate: min L(§,y) <W,X,Y > eg, v=PFx+f(w)+ ¢
Evaluate: Cross-validation

Prediction

Decision-Making
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What is causation?

* Formally, T causes Y iff changing T leads to a change in Y, keeping
everything else constant

Real World: do(T=1) Counterfactual World: do(T=0)

is the magnitude by which Y is changed by a unit change
in T:

E[Y|do(T = 1)] — E[Y|do(T = 0)]



Ladder of Causation

COUNTERFACTUALS

Activity: Imagining, Retrospection, Understanding
| |\/] AG ‘ N \ N G Questions: What if | had done...? Why? (Was it X that caused Y? What if X had not occurred? What if |
had acted differently?)

Examples: Was it the aspirin that stopped my headache? Would Kennedy be alive if Oswald had not
killed him? What if | had not smoked for the last 2 years?

INTERVENTION
BI®’ (€ Activity:  Doing, Intervening

Questions:  What if | do...? How? (What would Y be if | do X? How can | make Y happen?)

Examples: If | take aspirin, will my headache be cured? What if we ban cigarettes?

ASSOCIATION

Activity: Seeing, Observing
S E E ‘ N G Questions: What if | see...? (How are the variables related? How would seeing X change my
belief in Y?)
Examples: What does a symptom tell me about a disease? What does a survey tell us about the
election results?

Adapted from Judea Pearl, "The Book of Why: The New Science of Cause and Effect,” chapter 1, page




Don’t panic

Let’s continue
with an example
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What makes great a reservation?

™.
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Example data

* Data characteristics:
* Location = Madrid
* Historic listings until 7t Nov 2021
* User reviews

* Scrapped data from Airbnb Website
* Inside Airbnb

airbnb


http://insideairbnb.com/get-the-data.html

07T

SINGULARITY

1I0NS

Assumpt
* Location
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Assumptions

e Location
* Price

500

400 A

300

200 1

100 1

Madrid Price per person per night distribution
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Assumptions

e Location
* Price
e Estimated Revenue

# bookings by month 1e7 revenue by month avg booking price by month

70000 4
400

E0000 4

50000 4 300 4

40000 4

200 4
30000

20000 1
100 4

10000 4
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-1.0

Assumptions

review_scores rating 100 QEEREEFREVE S

° Location review _scores value RS 078 073 067
review_scores_accuracy R 071 0.72

* Price

review_scores_cleanliness [REEVEE |::-.?1|::- 58
e Estimated Revenue review_scores_communication [EREEOCTEFF. IIZ'E-E |
: . review scores checkin [EEERGEREEREEL u_?E. D52
* Review scoring
review scores |ocation [REEEEVETEEERY
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Assumptions

* Location

* Price

* Estimated Revenue
* Review scoring

e Accommodation features
* #fbeds, #bathrooms, #accommodates, etc.

* Host info
 Verified, picture, >1 accommodation, etc.
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Assumptions

* Location

* Price

* Estimated Revenue
* Review scoring

e Accommodation features
e #{beds, #bathrooms, #accommodates, etc.

* Host info
 Verified, picture, >1 accommodation, etc.

e Other features
e Review f, #freviews
* Availability, instant bookable
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What can | use to model causat|on?




Microsoft

Iscover DoWhy

A software library for causal inference
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DoWhy framework

Identify 2 - Refute 1

Create a causal graph Formulate desired Compute the causal Validate your
to encode assumptions quantity from given effect on the data assumptions
relationships
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@R Step 1: Create the Causal Model

model= dowhy.CausalModel(
data = pd_listing causal,
graph=causal_graph.replace("\n", " "),
treatment="high_rating’,
outcome='review_scores_rating')
model.view_model()
from IPython.display import Image, display
display(Image(filename="causal model.png"))

o

F Reviews
# Reviews
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Step 2: Identify the cause

identified _estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)

Estimand type: nonparametric-ate

### Estimand : 1
Estimand name: backdoor

Estimand expression:
d

(Expectation(review_scores_rating|Assumptions))
d[high_rating]

Estimand assumption 1, Unconfoundedness: If U-»{high_rating} and U-review_scores_rating then
P(review_scores_rating|Assumptions) = P(review_scores_rating|Assumptions)

### Estimand : 2
Estimand name: iv
No such variable found!

### Estimand : 3
Estimand name: frontdoor
No such variable found!
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Step 2: Identify the cause

identified _estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)

review_scores_rating
depends of

* Price

* Location

* Listing Info
* Description
* # bathrooms
* #bedrooms
* #accommodates
* Type

* Host Info
* Response Time
* Acceptance rate
* Verified Identity

* |s superhost
Number of Reviews
Reviews per month
Instant bookable
Minimum nights
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Step 3: Estimate identified cause

estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.propensity score_stratification",target _units="ate")
print(estimate)

*%* Causal Estimate ***
## |dentified estimand
Estimand type: nonparametric-ate

##H# Estimand : 1

Estimand name: backdoor
Estimand expression:

d

(Expectation(review_scores_rating|Assumptions))
d[high_rating]

##t Estimate Mean value: 0.6019096196672494
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Step 4: Refute obtained results

refute_results=model.refute_estimate(identified _estimand, estimate,
method_name="random_common_cause")
print(refute_results)

Refute: Add a Random Common Cause
Estimated effect: 0.6019096196672494
New effect: 0.6035238148349483
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ML &y Causal Inference

e Better estimations
e Refutation of causal effect

Machine Causal

Learning Inference

o

* “MGeneralization and robustness
* Beginning for fairness and explanation
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Conclusion

* Causal inference is key for a approach
* Tranferability, generalization, fairness, explanability

e Causal + ML is the beginning of a beautiful friendship
* Opens heterogeneous Treatment effects = Uplifting

* Challenges:

1. Counterfactual world cannot be observed = estimate effects and
challenges in validation

2. Data alone is not enough = multiple model representation, need
assumptions and domain knowledge




One more thing...
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How to apply personalization?

e Uplifting modeling optimizes for incremental effect

A(P(Behavior | Intervention), P(Behavior | No Intervention))

* Uplift modeling enables personalized treatment
o

i AALS AloO|e L

seee | 2000 ...
N ‘_ - O Dleo &&&.
e 200 Oleo

Launch personalize experience
Estimating CATE by Uplift Model
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