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What makes a great product?
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Someone may think 
that a product …

• fulfills a real, deeply-felt need

• delivers a singular value proposition

• is simple and intuitive

• has a great design → Craftspersonship

• uses the correct technology
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Where is the user?
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Customers don’t know what they want
until we’ve shown them.

Steve Jobs

You've got to start with the customer 
experience and work backwards to the 

technology. You can't start with the technology 
and try to figure out where can I sell it.
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How can I become 
customer centric?

• Being in customers shoes

• DILO → Day In Life Of

• Try, test, innovate

• Create new necessities

• Personalization over generalization

• Understanding customer psychology
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Causality



#STechDay2021

@ematde

eduardo.matallanas@plainconcepts.com

Knowmad interested in:

• Changing live through AI

• Passionate in robotics

• Data lover

• Films & series

• Bike enthusiast & martial artist practitioner

Eduardo Matallanas
Head of AI @ Plain Concepts
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Things we will talk today

• Customers, customers and more 
customers

• Causality

• How to combine AI+causality

• Some Statistics

Attention: Lots of questions with no answer 😉
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How can I become user-
centric?
• Data is needed

• Monitor your users

• Measure user behavior

• Use of AI/ML to
• Find data correlation

• Extract features form behavior

Why really users select our product?
Causality is the answer
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Why do we need causality when we 
already have AI?
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Why do we need causality when we already have 
AI?
• Not everything is correlation
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• AI often finds spurious ones
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Why do we need causality when we already have 
AI?
• Not everything is correlation

• AI often finds spurious ones

• Implies generalization problems

• Not too explainable

• Fairness/Non-discrimination
• Some correlations shift data 

distributions

• Decision-making → “Human-like” AI
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What is causality?
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The Merovingian

There is only one constant. One universal. 
It is the only real truth. Causality. Action, 

reaction. Cause and effect.
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What is causation?

• Inferring the effect of a treatment/policy T in some outcome Y

• Example: Sleeping with shoes causes waking up with headache.
• Common cause: drink night before

Z

Causal Association

Confounding association

Total association = Causal + Confounding
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Difference between AI and Causal inference
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What is causation?

• Formally, T causes Y iff changing T leads to a change in Y, keeping 
everything else constant

Causal effect is the magnitude by which Y is changed by a unit change 
in T:

𝐸 𝑌 𝑑𝑜 𝑇 = 1 − 𝐸[𝑌|𝑑𝑜 𝑇 = 0 ]
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Ladder of Causation
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Don’t panic

Let’s continue 
with an example



#STechDay2021

What makes great a reservation?
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Example data

• Data characteristics:
• Location →Madrid

• Historic listings until 7th Nov 2021

• User reviews

• Scrapped data from Airbnb Website
• Inside Airbnb

http://insideairbnb.com/get-the-data.html
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Assumptions

• Location
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Assumptions

• Location

• Price

Madrid Price per person per night distribution
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Assumptions

• Location

• Price

• Estimated Revenue
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Assumptions
• Location

• Price

• Estimated Revenue

• Review scoring

• Accommodation features
• #beds, #bathrooms, #accommodates, etc.

• Host info
• Verified, picture, >1 accommodation, etc.

• Other features
• Review f, #reviews
• Availability, instant bookable
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What can I use to model causation?
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DoWhy framework

Model

1
Identify

2
Estimate

3
Refute

4
Create a causal graph 
to encode assumptions

Formulate desired 
quantity from given 
relationships

Compute the causal 
effect on the data

Validate your 
assumptions
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model= dowhy.CausalModel(
data = pd_listing_causal,
graph=causal_graph.replace("\n", " "),
treatment='high_rating',
outcome='review_scores_rating')

model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))

🙈 Step 1: Create the Causal Model
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#Identify the causal effect
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)

🙉 Step 2: Identify the cause

Estimand type: nonparametric-ate

### Estimand : 1
Estimand name: backdoor
Estimand expression:

d                                                                      
────────────── (Expectation(review_scores_rating|Assumptions))
d[high_rating]

Estimand assumption 1, Unconfoundedness: If U→{high_rating} and U→review_scores_rating then
P(review_scores_rating|Assumptions) = P(review_scores_rating|Assumptions)

### Estimand : 2
Estimand name: iv
No such variable found!

### Estimand : 3
Estimand name: frontdoor
No such variable found!
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#Identify the causal effect
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)

🙉 Step 2: Identify the cause

review_scores_rating

depends of

• Price
• Location
• Listing Info

• Description
• # bathrooms
• # bedrooms
• # accommodates
• Type

• Host Info
• Response Time
• Acceptance rate
• Verified Identity
• Is superhost

• Number of Reviews
• Reviews per month
• Instant bookable
• Minimum nights
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estimate = model.estimate_effect(identified_estimand,
method_name="backdoor.propensity_score_stratification",target_units="ate")

print(estimate)

🙊 Step 3: Estimate identified cause

*** Causal Estimate ***

## Identified estimand

Estimand type: nonparametric-ate

### Estimand : 1 

Estimand name: backdoor 
Estimand expression:

d                                                                      
────────────── (Expectation(review_scores_rating|Assumptions))
d[high_rating]

## Estimate Mean value: 0.6019096196672494 
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refute_results=model.refute_estimate(identified_estimand, estimate,
method_name="random_common_cause")

print(refute_results)

🐵 Step 4: Refute obtained results

Refute: Add a Random Common Cause 
Estimated effect: 0.6019096196672494
New effect: 0.6035238148349483
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ML🤝Causal Inference

Causal 
Inference

Machine 
Learning

• Better estimations
• Refutation of causal effect

• ↑Generalization and robustness
• Beginning for fairness and explanation
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Conclusion

• Causal inference is key for a strong AI approach
• Tranferability, generalization, fairness, explanability

• Causal + ML is the beginning of a beautiful friendship
• Opens heterogeneous Treatment effects → Uplifting

• Challenges:
1. Counterfactual world cannot be observed → estimate effects and 

challenges in validation

2. Data alone is not enough →multiple model representation, need 
assumptions and domain knowledge



One more thing…



#STechDay2021

How to apply personalization?

• Uplifting modeling optimizes for incremental effect

• Uplift modeling enables personalized treatment

Control

Treatment

Estimating CATE by Uplift Model
Launch personalize experience

∆(𝑃 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 , 𝑃 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑁𝑜 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛))



Thank you!


