Powered by Plain Concepts

#STechDay2021

SINGULARITY **TECH DAY** 2021

The era of AI and Cognitive Services

The hitchhiker's guide to your users

plain concept5

ORGANIZATION

SPONSORS

THANK YOU!

SINGULARITY TECH DAY_2021

Someone may think that a product ...

- fulfills a real, deeply-felt need
- delivers a singular value proposition
- is simple and intuitive
- has a great design \rightarrow Craftspersonship
- uses the correct technology

Where is the user?

"

Customers don't know what they want until we've shown them.

"

You've got to start with the customer experience and work backwards to the technology. You can't start with the technology and try to figure out where can I sell it.

Steve Jobs

#STechDay<mark>2021</mark>

How can I become customer centric?

- Being in customers shoes
 - DILO \rightarrow Day In Life Of
- Try, test, innovate
- Create new necessities
- Personalization over generalization
- Understanding customer psychology

#STechDay2021

@ematde

Eduardo Matallanas

Head of AI @ Plain Concepts

Knowmad interested in:

- Changing live through AI
- Passionate in robotics
- Data lover
- Films & series
- Bike enthusiast & martial artist practitioner

eduardo.matallanas@plainconcepts.com

#STechDay2021

Things we will talk today

- Customers, customers and more customers
- Causality
- How to combine AI+causality
- Some Statistics

How can I become usercentric?

- Data is needed
 - Monitor your users
 - Measure user behavior
- Use of AI/ML to
 - Find data correlation
 - Extract features form behavior

Why really users select our product? Causality is the answer

Why do we need causality when we already have AI?

Why do we need causality when we already have AI?

Not everything is correlation

Number of people who drowned by falling into a pool

correlates with Films Nicolas Cage appeared in

SINGULARITY TECH DAY_2021

Why do we need causality when we already have AI?

- Not everything is correlation
 - Al often finds spurious ones

D:nl-

SINGULARITY TECH DAY_2021

Why do we need causality when we already have AI?

- Not everything is correlation
 - Al often finds spurious ones
- Implies generalization problems

Incorrect predictions under changes in data [Alcorn et al. CVPR 2019]

	L IIIK
What colour is the tray?	Green
Which color is the tray?	Green
What color is it?	Green
How color is tray?	Green

Fooled by semantically equivalent perturbations [Ribeiro et al. ACL 2018]

Why do we need causality when we already have AI?

- Not everything is correlation
 - Al often finds spurious ones
- Implies generalization problems
- Not too explainable

SINGULARITY TECH DAY_2021

Why do we need causality when we already have AI?

- Not everything is correlation
 - Al often finds spurious ones
- Implies generalization problems
- Not too explainable
- Fairness/Non-discrimination
 - Some correlations shift data distributions

SINGULARITY TECH DAY_2021

Why do we need causality when we already have Al?

- Not everything is correlation
 - Al often finds spurious ones
- Implies generalization problems
- Not too explainable
- Fairness/Non-discrimination
 - Some correlations shift data distributions
- Decision-making \rightarrow "Human-like" Al

What is causality?

"

There is only one constant. One universal. It is the only real truth. Causality. Action, reaction. Cause and effect.

The Merovingian

What is causation?

- Inferring the effect of a treatment/policy T in some outcome Y
- Example: Sleeping with shoes causes waking up with headache.
 - Common cause: drink night before

Difference between AI and Causal inference

Supervised Machine Learning

Causal Inference

What is causation?

• Formally, T causes Y iff changing T leads to a change in Y, keeping everything else constant

Real World: do(T=1)

Counterfactual World: do(T=0)

Causal effect is the magnitude by which Y is changed by a unit change in T:

$$E[Y|do(T = 1)] - E[Y|do(T = 0)]$$

Ladder of Causation

IMAGINING

DOING

SEEING

COUNTERFACTUALS

Activity: Imagining, Retrospection, Understanding

Questions: What if I had done...? Why? (Was it X that caused Y? What if X had not occurred? What if I had acted differently?)

Examples: Was it the aspirin that stopped my headache? Would Kennedy be alive if Oswald had not killed him? What if I had not smoked for the last 2 years?

INTERVENTION

Activity: Doing, Intervening

Questions: What if I do...? How? (What would Y be if I do X? How can I make Y happen?)

Examples: If I take aspirin, will my headache be cured? What if we ban cigarettes?

ASSOCIATION

Activity: Seeing, Observing

Questions: What if I see...? (How are the variables related? How would seeing X change my belief in Y?)

Examples: What does a symptom tell me about a disease? What does a survey tell us about the election results?

Adapted from Judea Pearl, "The Book of Why: The New Science of Cause and Effect," chapter 1, page

Don't panic Let's continue with an example

What makes great a reservation?

airbnb

#STechDay2021

airbnb

Example data

- Data characteristics:
 - Location \rightarrow Madrid
 - Historic listings until 7th Nov 2021

#STechDay2021

- User reviews
- Scrapped data from Airbnb Website
 - Inside Airbnb

- Assumptions
- Location

Assumptions

Location

• Price

Madrid Price per person per night distribution

#STechDay2021

Assumptions

- Location
- Price
- Estimated Revenue

#STechDay2021

Assumptions

- Location
- Price
- Estimated Revenue
- Review scoring

review_scores_rating	1.00	0.85	0.81	0.76	0.75	0.69	0.52	
review_scores_value	0.85	1.00	0.78	0.73	0.67	0.63	0.54	1
review_scores_accuracy	0.81	0.78	1.00	0.71	0.72	0.69	0.53	-
eview_scores_cleanliness	0.76	0.73	0.71	1.00	0.58	0.55	0.46	
w_scores_communication	0.75	0.67	0.72	0.58	1.00	0.78	0.53	
review_scores_checkin	0.69	0.63	0.69	0.55	0.78	1.00	0.52	
review_scores_location	0.52	0.54	0.53	0.46	0.53	0.52	1.00	-

ľ

revie

review_scores_rating review_scores_accuracy review_scores_accuracy review_scores_cleanliness review_scores_communication review_scores_checkin review_scores_location

#STechDay2021

1.0

0.9

0.8

0.7

0.6

0.5

Assumptions

- Location
- Price
- Estimated Revenue
- Review scoring
- Accommodation features
 - #beds, #bathrooms, #accommodates, etc.

Assumptions

- Location
- Price
- Estimated Revenue
- Review scoring
- Accommodation features
 - #beds, #bathrooms, #accommodates, etc.
- Host info
 - Verified, picture, >1 accommodation, etc.

Assumptions

- Location
- Price
- Estimated Revenue
- Review scoring
- Accommodation features
 - #beds, #bathrooms, #accommodates, etc.
- Host info
 - Verified, picture, >1 accommodation, etc.
- Other features
 - Review f, #reviews
 - Availability, instant bookable

What can I use to model causation?

Discover DoWhy A software library for causal inference

#STechDay2021

DoWhy framework

quantity from given relationships

effect on the data

assumptions

Step 1: Create the Causal Model

#STechDay2021

Step 2: Identify the cause

#Identify the causal effect
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified estimand)

Estimand type: nonparametric-ate

```
Estimand assumption 1, Unconfoundedness: If U→{high_rating} and U→review_scores_rating then P(review_scores_rating|Assumptions) = P(review_scores_rating|Assumptions)
```

Estimand : 2
Estimand name: iv
No such variable found!

Estimand : 3
Estimand name: frontdoor
No such variable found!

#STechDay2021

Step 2: Identify the cause

#Identify the causal effect

identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)

review_scores_rating

depends of

- Price
- Location
- Listing Info
 - Description
 - # bathrooms
 - # bedrooms
 - # accommodates
 - Type
- Host Info
 - Response Time
 - Acceptance rate
 - Verified Identity
 - Is superhost
- Number of Reviews
- Reviews per month
- Instant bookable
- Minimum nights

#STechDay<mark>2021</mark>

Step 3: Estimate identified cause

<pre>estimate = model.estimate_effect(print(estimate)</pre>	<pre>identified_estimand, method_name="backdoor.propensity_score_stratification",target_units="ate")</pre>
*** Causal Estimate ***	
## Identified estimand	
Estimand type: nonparametric-ate	
### Estimand : 1	
Estimand name: backdoor Estimand expression:	
d (Expectation(revie d[high_rating]	ew_scores_rating Assumptions))

Estimate Mean value: 0.6019096196672494

#STechDay2021

Step 4: Refute obtained results

Refute: Add a Random Common Cause Estimated effect: 0.6019096196672494 New effect: 0.6035238148349483

ML S Causal Inference

• Beginning for fairness and explanation

Conclusion

- Causal inference is key for a strong AI approach
 - Tranferability, generalization, fairness, explanability
- Causal + ML is the beginning of a beautiful friendship
 - Opens heterogeneous Treatment effects \rightarrow Uplifting
- Challenges:
 - 1. Counterfactual world cannot be observed \rightarrow estimate effects and challenges in validation
 - 2. Data alone is not enough → multiple model representation, need assumptions and domain knowledge

One more thing...

How to apply personalization?

• Uplifting modeling optimizes for incremental effect

 $\Delta(P(Behavior | Intervention), P(Behavior | No Intervention))$

Uplift modeling enables personalized treatment

Estimating CATE by Uplift Model

Launch personalize experience

Thank you!

plain concepts